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ABSTRACT

In an attempt to get better sgreement between the theoretical
predictions and the observed energies and widths of 2p+ls pion-atomic
transitions, we have numerically integrated the Klein-Gordon equation
assuming the optical model for the strong interaction potential. We
have characterized the interaction by six s-wave and four p-wave param-
eters. Using the available data from B! to Mg2“, we heve performed a
least squares fit of the s-wave parameters. We find agreement between
the observed shifts and our predictions and the real parts of the s-wave
parameters asgree well with those predicted by the Eriesons. However,
our predicted widths vary as much as 50% from the observed widths and
find very poor agreement between the imaginary s-wave parameters and

the Ericsons' predictions.



I. INTRODUCTION

Pionic 2p*ls transitions in comparatively high Z nuclei such as Na
have made it clear that present techniques in predicting the strong interaction
widths are not adequate. Originally the standard procedure was to use first
order perturbation theoryl on some assumed nuclear potential. Unfortunately
such a method predi.c:*(‘.zs:a & strong interaction width for the 1ls level in Ha.za

which is off by a factor of five. Indeed, vhereas Brueckner3 predicted that

the widths should vary roughly as Z, there is strong evm.em:eh’s’6 7 that

the widths level off in the region of flourine.

The ugsefulness of studying the bound pion nuclear system lies in the
fact that the pion interacts strongly with both neutrons and protons. If the
pion-nuclear interactions can be understood, one has a valuable tool in probing
the matter distribution inside a nucleus, not just the charge distridbution es
in the case of muons. In addition, since the absorption of a pion occurs

8

mainly on two closely correlated nucleons , in principle, pionic atoms provide

a means of studying such short range correlations.

Two years ago Seki and Cromer9 and Fulcher, Eisenberg and le Tourneuxm
contested the use of first order perturbation theory. They showed that one
cannot assume that the strong interaction leaves the pion wave function unchanged
inside the nucleus. In fact Fulcher et al. proceeded to show that in the 1s
level in Na?3 one might expect & four-fold reduction of the pion overlap with
the nucleus.

In addition Truemanl®

pointed out that the interference between the real
and imaginary parts of the nuclear potential might appreciably alter the theo-

retical predictions. Depending upon the relative size of the real and imaginary
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parts of the potential, the widths might be strongly influenced by the real
part of the potential and, to a much lesser degree, the shifts might be
affected by the imeginary parts.

Prompted by these theoretical considerations and by the recent experi-
mental activity in pionic x rays, we have modified a computer code to solve
the Klein-Gordon equation assuming an optical model for the nucleus. We have
numerically integrated the wave equation assuming s functional form for the
strong interaction potential discussed by the Ericsonsle. Their model is
based on the premise that one can predict the pion-nuclear interaction from a
knowledge of pion-nucleon behavior. It relates the pion-nuclear potential to
appropriate pion-nucleon scattering amplitudes and pion absorption rates.

As a result - if the model is correct in concept - one can predict
pionic atom binding energies in terms of other experimental quantities, which
are reasonably well-known. The most optimistic approach to the problem would
be to claim that pionic atom energy levels are completely determined by a
sufficiently good knowledge and understanding of plion nucleon sesttering
processes. On the other hand a more conservative approach would be to admit
that the model predicts a functionel form for the interaction, which can then
be parameterized in terms of a few unknown constants. Our approach was the
latter. We have assumed that the Ericson model for the nuclear potential can
be expressed in terms of ten constants - six for the s-wave and four for the
p-vave scattering amplitudes. We have performed a least squeres fit of the
six s-wave constants to the experimental 2p+ls transition energies and widths
assuming "reasonsble" values for the four p-wave constants, which for the

most part have little effect on the 1ls strong interaction shift and widths,
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In the following section we summarize the relevant theory and define
the nuclear scattering parameters. In Section III we summarize the experi-
mental situation, We discuss the sensitivity of our results to the assumed
charge distribution in Section IV, Then we discuss the predicted widths and
gshifts. Finally in Section VI we examine the best fit s-wave nuclear parameters

obtained from the pionic x-reay data and compare these to those predicted by the

Ericsons.



II. THEORY

For non-reletivistic pionic atoms one can use the Schrodinger equation

(p2 + V) v = ey, (1)
2m

vhere V is the sum of the electromagnetic potential Vcand the nuclear potential
Vn, € is the binding energy of the pion, and m and p are the pion mass and
momentum respectively. However, anticipating the relativistic corrections
yielded by the Klein-Gordon equation relative to the Schrodinger equation, one
finds in Na23 the relativistic shifts are nearly 3 keV, much larger than the
experimental error. Clearly a relativistic generalization of the sbove is
necessary.

One procedure as discussed in Goldberger and Wat.son13

is to replace the
non-relativistic kinetic energy operator by its relativistic generalization
(sz + mZ - m). One can then obtain a relé.tivistic wave equation involving

a commutator
(p2 +m2) ¢ + [(p2 + m2)1/2v] y =& - V)2 ¢, (2)

vhere E is the total pion energy including the its rest mass., With the excep-
tion of the commutator, this equation is identical to the Klein~-Gordon equation,
assuming, of course, that some suitable relativistic potential can be found.

To first order in p2, the expectation value of the commutator vanishes for a
real potential. We chose to treat the Coulomb part of the problem relativis-
tically, and to first order the commutator will not contribute to this part of
the interaction. Since we intended to use an optical potential for the strong
interaction and this potential is non-relativistic, we kept only those terms

in the wave equation which are linear in Vn and dropped the commutator term

because 1t is a reletivistic correction. When we took into consideration the
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finite mess of the nucleus, our wave equation became:

(1+m) v2y = (m2 - (E - vc')2 t2mV )y (3)
AM

where M 1s the nucleon mass and A is the atomic mass number. Letting

E=m+ ¢, we find

¥2 ¢ + [e - V +(e - Vc)Z] V=0 (k)
2u
2m

where u is the reduced mass of the pion-nuclear system. In Eq. (%) we can
clearly see the relativistic correction (¢ - Vc)2 due to the electromagnetic
interaction. 2m

According to the Ericsons one can describe the pion nuclear interaction

using the following non-relativistic potential Vﬁ

V, =V -1 Vav (5)
2m
where the local potential VL’ which corresponds to s-wave pion nucleon inter-
actions, cen be written
v, = -m(r) - mz(?) (6)

2u

and the non-local potential, which corresponds to p-wave pion nucleon inter-

action, is given in terms of o which in turn can be written
2uo = =L(r) (n3(r) + ny(r)). (7)

Here my(r) and nj(r) correspond to single nucleon processes; m,(r) and ns(r)
are two-nucleon contributions. The function L(r) takes into account short-

range correlations between scatterers and is analogous to the Lorentz-Lorenz
effect which arises from the scattering 6f light in dense classical medialz.
A potential of this form is often referred to as a Kisslingerlh potential.

These functions are given by
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mi(r) = 4r (1 + m/M)(bg + by (N - Z)/A)e(x) + AmlF(r) + Amc(r), (8)
m

mz(r) = -:i% ( 1l + %&' )(Bo + %1_-1)02(1') + AmaF(r), (9)
L(r) = (1 + (n(r) + np(x)))*", (10)
3
ny(r) = -lﬂ',— (1 + m/M)(cqg + c1(N - 2)/A)po(r), (11)
m
np(r) = L#_‘g_ (1 +1_q___) Co p? (r), (12)
m 2M

where p(r) is the nucleon density distribution normalized to A (we are assuming
here that the proton end neutron distributions are identical).
The finite correlation length correction Amc(r) is given by
tmg(r) = 2921 + m/U)2p2(r){bo? + B1?) B2, (13)
m
vhere Pp is the Ferml momentum of a nucleon in the nucleus and is of the order
of 250 MeV/c.

The corrections AmlF and Asz due to the Fermi motion of the nucleons

inside the nucleus are given by

dmyp = ()20, () L(x) < P2 > (14)
fmyp =(.my2 n2{r) Lr) < p§N> (15)
2M

vhere <p§> is the mean square momentum of a single nucleon and is of the order
of three-fifths pZF; <p§N> is the mean square momentum of & pair of nucleons
and is of the order of twice <p§>.

The single nucleon parameters bg, by, cg and c¢; are real; whereas, the

two nucleon paremeters By, By and Cp are complex.



T

In solving Eq. U numerically we found it useful to rewrite the equation
in the following form:

. 240) Walle-v)a+5"Ye)viys=o.

2u 2m

The code used to solve the Klein-Gordon equation with complex potential
was based on methods used in & program by McKeelS, which solves the Dirac
equation for muonic atoms. The Klein~Gordon equation is solved exactly using &
Runge-Kutte method for developing the wave functions. A general discussion of
the principles of such techniques is given by Blattls. We perform a perturba-
tion calculation to evaluate the vacuum polerization and Lamb shift corrections.

To check the validity of the integration procedure we calculated the
binding energy of a l1s pion in Na?3 for a point Coulomb potential and compared
this with the Klein-Gordon point value. The agreement was within 0.05 keV,
vhich is consistent with our convergence criterion.

In this work, we have assumed that the c¢'s - the non-local paremeters-
are fairly well-known and used essentially the Ericsons' estimstes. We then
used all available 1s shift and width data from Bl0 to Mg to determine the six
parameters bg, by, ReBg, ImBy, ReB; and ImBy. The values so obtained can then
be compared to the values predicted by the Ericsons. Experimental data is
available for He", Li®, Li” and Be? but we hesitate to apply the optical model
to systems with so few nucleons where surface effects and A~Y terms may become
important. We have, howvever, made predictions for these elements although they
have not been used in obtaining best values for the s-wave parsmeters. We have
also determined the s-wave parameters assuming that the corrections Amu.(r),
bm,e(r) and fm, are sll zero. This was done to avoid compounding the inherent

uncertainties of these corrections with the uncertainties in our determination

of the s-wave parameters.
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III. EXPERIMENTAL DATA

The transition energies and widths for the 2p+ls transitions have been
measured by many groups. The first measurements using Nal scintillation counters
and proportional counters have been summarized by WestlT. These measurements
disagree with each other. More recently solid-state~detectors have been used
and these data are in good agreement with the later measurements of West except
for the width of the Be? line which was not analyzed properlyh.

In our ansalysis, we have taken only the solid-state-detector measurements
because of their higher resolution in this energy range. The higher resolution
not only allows more accurate measurement but it also helps to separate out the
the muonic and nuclear gamma transitions in the spectra which are close in
energy to the pionic lines and which complicate the analysis of these lines.

Table I summarizes the present data on pionic widths and shifts for the
2p+ls transitions as measured by solid-stete-detectors. An average value for
each isotope has been derived by weighting each measurement with the inverse
square of its quoted error. The error on the average value is the reciprocal
of the summed inverse squares of the error for each measurement. The satura-
tion effect, mentioned in the introduction, is clearly seen by inspecting the

averaged widths as a function of Z.



IVv. CHARGE PARAMETERS

In general for the nuclei examined (Z : 12) it is sufficient - to a
good epproximation - to describe the charge density in terms of a single length
parameter. This is indeed fortunate, since the available charge distribution
information generally yields very accurately only a single length parameter,
which cen be related to the rms radius. The rms radii have been taken from
electron scattering and muonic x~rey data18’19. Whenever datsa were avallable
from both sources, the results of the more accurate determination was used.

A summary of the relevant charge parameters is found in Table II.

In general we found that the shifts and widths were insensitive to the
detailed charge distribution as long ss the mean square radius was held constant.
For the lower Z nuclei both shell model distributions and Fermi distributions

(1abeled G and F respectively in Table II) were considered. For nuclei with

Z £ 8 the shell model distribution is a Gaussian with a central depression and

is given by
2 2
wr -1
0 = 00 (l + cz ) exp (-;-2'— (17)

where ¢ is the characteristic length parameter; w is the central depression
perameter given by

we=(Z-2)/e;

and the root mean square radius Toms is given by

r2 = c2 (6 + 15w)/(4 + 6w);

rms

po is a nomalization constant.

The Fermi distribution can be written in the following convenient form:

p=pg (1+ exp(n({- - N (18)
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where the dimensionless parameter n is related to the half-density radius c

and the skin thickness (90% - 10%) t through the expression
n = c¢/(0.228%).

Comparison of the energies and widths for Z 5 8 nuclei for shell model
end Fermi distributions with the same Toms VT made. The sensitivity to the
change of distribution is negligible. For example for 016 we assumed a
Gaussian distribution with c¢/Al/3 = 0.70 F end w = 2 giving the same value
of Req/All3 shown in Table II for a Fermi distribution and found that the
transition energy end the width differed by 0.06 keV from the results obtained
from a Fermi distribution. In our final calculations we assumed a shell model
distribution for Z S 4 and a Fermi distribution for the other cases.

In a two parameter distribution like a Fermi distribution, Tons does
not determine the half-density radius and skin thickness uniqguely. Therefore
we had to check the sensitivity of the binding energies and widths to the
particular combination of ¢ and n used. As an example a comparison of the
results of two pairs of ¢ and n is given in Table III. Again the results are
insensitive to the change in charge distribution. Here we have assumed a
change in ¢ of 2.5%. The effect is no more than a 0.23 keV change in the
width of the 1ls level and an even smaller change in the transition energy.

For the most part we have chosen the values of ¢ given by Elton19

, Which are
generally known to within 2% and determined n from the observed rrms'

It should be noted that muonic x rays and electron scattering yield
information concerning the nuclear charge distribution with the finite size
of the proton folded into the distribution. To get the density of nucleon

centers we subtracted out the proton radius from the mean square nuclear radius,

that is
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- 2 _ 2
<rfy>=<rf>-<r p > (19)

where < rZM > is the mean square radius of the density of nucleon centers;

< r2C > is the nuclear mean square charge radius determined by muonic x rays

or electron scattering;

< r2P>-1/2.is the root mean square proton charge radius, observed to be 0.776 F20.
It should be stressed that the predictions were quite sensitive to whether we
included this last correction or not as the finite size of the proton constitutes
an eppreciable portion of the nuclear volume even in Na?3. In this element

< rzc>1/2 is 2.945 F. whereas < r2M>-1/2 is 2.840 F. As a result the width
would be 1 keV less and the transition energy would be 0.4 keV more if the
proton size were not removed.

Throughout our discussion we have assumed that the neutrons are described

by the same distribution as the protons. The effect of letting the neutron

distribution vary relative to the proton distribution bears future investigation.
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V. RESULTS

We shall now discuss our solutions using the nuclear parasmeters obtained
from the least squares fit of the predicted widths and shifts to the data. In
the next section we shell exasmine the values of the nuclesr parameters so obtained.

In Fig. 1 we display the relative strengths of the local strong potential
in comparison with the electromagnetic potential for a point as well as a finite
charge distribution for a pion in Na23, It is interesting to note that at the
center of the nucleus the repulsion due to the real part of the local potential
is four times stronger than the Coulomb interaction. Of course, the total strong
potential is not 26 MeV since the non-local term is not included in Fig. 1. How~
ever the net strong potential is repulsive and it is this strong repulsion which
reduces the overlap of the pion wave function with the nucleus, illustrated in
Fig. 2. We have found that inside the Na23 nucleus the probability density of
the pion has been reduced to 24% of the point nucleus value in excellent agree-
ment with Fulcher et allo. For convenience we have also included in Fig. 2 a
plot of the pion probability density for a point Coulomb interaction and a finite
Coulomb intersaction.

In Table IV we compare our predictions including all corrections listed
in the theoretical discussion with the experimentally observed widths and energies
of 2p+*ls pionic transitions. If we exclude the corrections AmlF’ AmaF, end Amc,
we obtain different "effective" nuclear parameters but our predicted transition
energies and widths are not apprecisbly changed. Quantitatively there is excel-
lent sgreement between prediction and experiment as far as the transition energies
are concerned but we have not been able to duplicate the strange behavior of the
widths in the region of Na23, The least squares fit program has produced better

agreement in Na23 at the expense of 0!€ and 0!8, In order to get a reasonsbly
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smell width in Na23 we have had to accept fairly large underestimations in
oxygen. Even the sign of the isotope shift in oxygen is not correctly pre-
dicted suggesting some weakness in the formalism in handling the iso-spin
dependence. However, in general, there has been a significant improvement
in the predictions through the use of an exact solution of the Klein-Gordon

equation compared to those obtained with first order perturbation theorya.
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VI. OPTICAL POTENTIAL PARAMETERS

In our present analysis we concentrate on the parameters that charae-
terize the locel part of the pion-nuclear optical potential. This is a
reasongble simplification in our case since we are presently concerned with
en analysis of the available experimental data on 2p>ls transitions in nuclei
with Z < 13. For such nuclei the local interaction dominates.

For the non-local potential we used the theoretical parameters estimated
by the Ericsonsla. However, since these parameters are subject to uncertainties,
we have studied the effects of variestions of these parameters on our results.
The influence of the non-local potentiel is expected to be most pronounced in
the heavier nuclei; therefore, we consider Na23, Varying cg within a range of
twice its uncertainty produced a change in our cslculated transition energy of
gbout 1/2% end a change in our calculated width of asbout 3%. The influence of
ci; was more than an order of megnitude down from that of cg. Since the complex
parameter Cp is not known to the same precision as cp we allowed this parameter
to vary within a range of 50% of the values given by the Ericsons. Typical
changes in the calculated energy were again sbout 1/2% whereas changes in the
calculated widths were sbout 15%. The non-local parsmeters were also varied in
the case of 012. The effect on the transition energy was negligible. In the
case of the width we found variations up to about 5%. Thus the effects due to
the non-local potential,_which certainly are not insignificant, are small enough
that they will not seriously affect our present results.

With the non-locael pasrameters given in Table V we have performed a least
squares analysis based on the available experimental data in order to determine
a set of best fit parsmeters that characterize the local potential. In Tgble V

we give those s-wave parameters obtained by including all the corrections mentioned
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in Section II. We have also calculated effective s-wave parameters, which
would be obtained if the corrections in Egqs. 9, 10 and 11 were set to zero.

In both cases we include the predictions made by the Ericsons. The prediction
for B; was estimated following arguments given in Ref. 12, Appendix B. The
origin of this term is due to spin and isospin dependent parts of the two
nucleon optical potential. To estimate its magnitude we averaged over the
spin and isospin variables according to methods discussed in Goldberger and
WatsonlB. |

It is seen from Teble V that the values of by, by, ReBp, and ReB;
obtained with and without corrections agree reasonably well with those predicted
by the Ericsons. Furthermore, the calculated transition energies are in agree-~
ment with those observed experimentelly. This supports the point of view of
Ref. 12 that the pion-nuclear interaction can be understood in terms of the
basic pion-nucleon interactions, at least in the case of an elastic process
(energy shift).

The calculated widths are still in fairly poor agreement with those
measured experimentally. This lack of agreement is reflected in the determina-
tion of the imaginary parts of our best fit opticsl potential parameters. These
parameters disagree strongly with the corresponding theoretical predictions.

It should be stressed, however, that if one were to leave out F19 and Na23 in
the determination of the local parameters there would be much better sgreement
in the widths of the remaining nuclei. Whether our lack of agreement is a
reflection of a weakness in the optical potential formalism or is related to
some specific effect in Na?3 and F!9 is not clear at this time.

This problem has also been examined by Backenstoss et al.21 where the
optical potential has been characterized by fewer parameters. They reach

similar conclusions to ours.
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VII. CONCLUSIONS

We have found that most of the discrepancy between earlier predictions
of pion-atomic transition energies and widths was due to not considering the
distortion of the pionic wave function by the strong interaction and the inter-
ference of the real and imaginary parts of the nuclear potential. We have found
quite good agreement between predicted and observed transition energies and
acceptable agreement between the real part of the nuclear potential inferred
from the pionic-atomic data with the predictions made by the Ericsons. However,
there is still a residual inconsistency between prediction and experiment with
regard to the widths. It is not clear whether this latter disagreement is due
to a weekness in the imaginary part of the optical potential formalism or is

related to some effect in the higher Z nuclei which has not been taken into

consideration.
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Z A
2 1
3 6
3 T
4 9
5 10
5 11
6 12
7 1k
8 16
8 18
9 19

1 23

12 2k

% Ref. 18

b

Ref. 19

TABLE II

Charge Parameters

A1/3 " v

(F)
0.825 - 0.0
1.026 - 0.333
0.930 - 0.333
0.856 - 0.667
0.91 3.79 -
0.87 3.79 -
1.00% 5.18 -
1.01 5.8 -
1.03% 5.59 -
1.03% 5.59 -
1.03 5.40 -
1.03 5.80 -
1.0 5.42 -

al/s3
(F)

1.304%
1.7942
1.625%
1.562%
1.467%
1.ko3®
1.363°
1.311°
1.357°
1.366°
1.368°
1.337°
1.3&9b

Distribution

e B B | - T B> SR > @

o]



Al/3
(F)

1.03

1.005

TABLE III

EFFECTS OF CHANGES IN CHARGE DISTRIBUTION IN Na23

5.8
5.h7

al/3
(F)

1.337
10336

Transition
Energy

(keV)

278.36
278,43

Width

(xeV)

10.70

10.93
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TABLE V

S-WAVE NUCLEAR PARAMETERS

Best Fit Ericsons®
From Pionic X rays Predictions
by -0.023 * 0.006 ~0.012 + 0.00k4
by -0.117 % 0.010 -0.097 * 0.007
ReBog ~-0.016 + 0.021 -0.01
ImBg 0.0005¢ 0.004T 0.012 + 0.001
ReB; ~0.090 * 0.060 -0.10
ImB, 0.466 * 0.058 0.099 + 0.022

EFFECTIVE S-WAVE NUCLEAR PARAMETERS
(Without Corrections)

Ericsonsa

From Pionic X rays Predictions
by -0.016 * 0.006 ~-0.008 + 0.00L4
b -0.111 # 0.010 0.097 + 0.007
ReBg -0.051 % 0.021 -0.034 + 0.00L
ImBg 0.0021% 0.00L4T 0.012 + 0.001

ReB; -0.090 * 0.060 ~0.10

ImB,; 0.466 + 0.058 0.099 * 0,022

ASSUMED P-WAVE PARAMETERS

co 0.21
c1 0.18
ReCy -0.1
ImCy 0.1

8411 the parameters except By, which is discussed in Section VI, are taken
from Ref. 12.



Fig. 1.

Fig. 2.

Figure Captions

Pionic nuclear potentials in Na?3. The real and imaginery parts
of the local strong potential are compared to the electromagnetic

potentials due to point and finite charge distributions.

The 1s pion probebility density in Na23 assuming (a) a point Coulomb
charge distribution, (b) a finite Coulomb charge distribution (both
with no strong interaction) and (c) a finite Coulomb and strong
interaction., The curves are normalized so that the total probability
of the pion (the probability density integrated over all space) is

the same for the three cases shown.
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